Question	Answer	Acceptable answers	Mark
Number			
1(a)(i)	solid	in either order	(2)
	liquid	plasma as an alternative to either.	

Question	Answer	Acceptable answers	Mark
Number			
1(a)(ii)	C temperature of the gas		(1)
	measured in Kelvin		

Question	Answer	Acceptable answers	Mark
Number			
1(b)(i)	an explanation linking two of the following three points: -		(2)
	particles move (1)	molecules/they move	
	bombarding/colliding (1)	hit ignore `pushing'	
	with wall/side (1) (only give if one of the previous marks is there) (of container)	e.g. molecules push on walls = 0 bounce off inside of container =2	

Question Number	Answer	Acceptable answers	Mark
1(b)(ii)	substitution $P_2 = \frac{101\ 000\ x\ 340}{2.5}$ (1) Evaluation 13.7 to any power of 10 (1) 13 700 000(Pa), 13 700kPa (1)	1.37(36) X 10 ⁷ / 13736000 14 to any power of 10 14 000 000 (Pa), 14 000 (kPa) Full marks are awarded for the correct answer with no working	(3)

Total for Question 2 = 8 marks

Question Number	Answer	Acceptable answers	Mark
2 (a)(i)	volume in range 9.0 – 10.5 (cm ³) (1) pressure in range 1.5 – 1.7 (kPa) (1)		(2)

Question	Answer	Acceptable answers	Mark
Number			
2 (a)(ii)	⊠ D 296 K		(1)

Question Number	Answer	Acceptable answers	Mark
2 (a)(iii)	Volume in range 4 – 8 (cm ³)	Any value between 4 (cm ³) and 8 (cm ³)	(1)

Question Number	Answer	Acceptable answers	Mark
2 (a)(iv)	Substitution (1) 2.2 x 10.8 ÷ 0.2 Evaluation (1) 119 (cm ³)	118.8 (cm ³) give full marks for the correct answer, no working	(2)

Questi	on	Indicative Content	Mark
Numbe	er		
QWC	*)	An explanation including some of the following points: particles in gas move rapidly throughout container collide with each other collide with walls/lid of container exerting a force particles in solid in fixed positions vibrate do not reach lid	(6)
Leve I	0	No rewardable content	
1	1 - 2	 a limited explanation e.g. particles in the copper do not toulid / particles in the oxygen do touch the lid the answer communicates ideas using simple language and limited scientific terminology spelling, punctuation and grammar are used with limited accuracy 	uch the d uses
2	3 - 4	 a simple explanation e.g. particles in a gas can move freely and collide with the lid the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy 	
3	5 - 6	 spelling, punctuation and grammar are used with some accuracy a detailed explanation e.g. particles in a gas can move freely and collide with the lid but particles in a solid vibrate about fixed positions so cannot reach the lid the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately 	

Question number	Answer	Additional guidance	Mark
3 (a)(i)	In the solid box: regular arrangement and particles touching (1) In the liquid box: irregular arrangement and most particles touching (1) In the gas box: random and spaced (compared to liquid) (1)	ignore variation in particle size ignore arrows/lines indicating movement allow solid and liquid arrangements that do not fill the box	(3)

Question number	Answer	Mark
3(a)(ii)	С	(1)

Question number	Answer	Additional guidance	Mark
3(b)(i)	substitution (1) 100 ÷ 13 answer (1) 7.7 (g/cm ³)	award full marks for correct numerical answer without working	
		allow 7.692 (g/cm ³)	(2)

Question number	Answer	Additional guidance	Mark
3(b)(ii)	 An answer that provides a description by making reference to: part fill a measuring cylinder with water and record the starting volume (1) completely immerse the stone in the water and record the final volume of water and stone (1) volume of stone = final volume (1) 	accept valid alternative methods, e.g. fill a displacement can until some water overflows/flows out of spout completely immerse the stone in the displacement can and collect the displaced water in a measuring cylinder volume of water displaced = volume of stone	(3)

Question number	Answer	Mark
4(a)(i)	pressure = force ÷ area	(1)

Question number	Answer	Additional guidance	Mark
4(a)(ii)	rearrangement (1) ($F =$) $P \times A$	award full marks for correct numerical answer without working	
	calculation of area (1) 2.4 \times 1.5 = 3.6	maximum 3 marks if kPa not converted to Pa	
	substitution (1) ($F =$)12000 × 3.6		
	answer (1) 43 200 (N)		(4)

Question number	Answer	Mark
4(a)(iii)	В	(1)

Question number	Answer	Mark
4(b)	 An answer that combines the following points to provide a plan: put weights on the plunger to increase the pressure of the trapped air (1) use scale on syringe to measure the volume of trapped air (1) calculate the pressure from P = weight added/area of plunger (1) compare the increase in pressure to the volume of trapped air (1) 	(4)